A METHOD OF CONSTRUCTION OF.PBIB DESIGNS

KISHORE SINHA
Birsa Agricultural University, Ranchi-834006
(Received : October, 1988)

Summary

A method of construction of PBIB designs by block intersection of non-linked PB1B designs is presented, which yields a new regular group divisible design. Also, a cyelic design is identified as a new regular group divisible design.
Keywords : PBIB desigñs, Group divisible designs, Latin square designs.

Introduction

Clatworthy [3] extensively tabulated group divisible designs. Since then, Freeman [7], Dey [4]. John and Turner [8], Bhagwandas and Parihar ([1] [2]), Dey and Nigam [6] have obtained many new group divisible designs not listed by Clatworthy. Recently, Dey [5] reported new PBIB designs.

The method of construction of designs by block section and intersection of symmetrical BIB designs and linked block PBIB designs is well known (see, Nair [10], Sane [12], Saha and Samanta [11]. Here, this method is extended to non-linked PBIB designs which yields a new regular group divisible design. Also, the cyclic design no. B86 in John, et al. [9] which is incompletely identified as a two-associate PBIB design is identified as a new regular group divisible design.

2. The Construction

By considering the block intersections of non-linked PBIB designs as: (i) $B_{l} U B_{j}$ (ii) $B_{i} U B_{j}-B_{i} \cap B_{j}$, (iii) $B_{i} \cap B_{j}, i \neq j, i, j=1,2 \ldots$, b; the blocks of different sizes thus obtained in each case may form different PBIB designs.

By forming new blocks as : $B_{i} \cup B_{j}, i \neq j, i, j=1,2, \ldots, b$, and considering blocks of size 6 only, the regular group divisible design R118 yields a new regular group divisible design number : R168a, with parameters :

$$
V=16, r=9, k=6, b=24, m=4=n, \lambda_{1}=7, \lambda_{2}=2 ;
$$

E (average efficiency) $=0.86$, whose plan is given below :

The four groups each of size four of this design are :
(15913), (261014), (371115), (481216).

By the application of the above method we find that :
(i) a latin square design ISS 28 yields LS 98, LS 84 and a known BIBD (16, 6, 2);
(ii) LS 51 yields LS 135, LS 117 and LS 101,
(iii) the regular group divisible design R 54 yields a singular group divisible design S 18 and regular group divisible designs :
(a) $v=8, b=24, r=15, k=5 . \lambda_{1}=6, \lambda_{2}=9, m=4, n=2$; and.
(b) $v=8, b=24, r=12, k=4, \lambda_{1}=6, \lambda_{2}=5, m=4, n=2$.

Although a search has been made to find new designs in the range of $r, k 10$ by this method, its exhaustiveness is difficult to claim.

Also, a regular group divisible design number : R 150a with parameters : $v=15, r=10, k=5, b=30, m=3, n=5 . \lambda_{1}=5, \lambda_{2}=2$, and $E=0.84$ may be obtained by developing the initial blocks ; (1 24 711), (1241013) mod 15, given as cyclic design $B 86$ in John, et al. [9].

ACKNOWLEDGEMENT

The author is thankful to the referce for positive comments.

REFERENCES

[l] Bhagwandas and Parihar. J, S. (1980) : Some new group divisible designs, J. Statist. Plann. and Inference, 4 : 321-23.
[2] Bhagwandas and Parihar, J, S. (1982) : Some new series of regular group divisi، ble designs, Commun. Statist., Theor.-Math., 11: 761-68.
[3] Clatworthy, W. H. (1973) : Tables of Two-associate-class Partially Balanced Designs, National Bureau of Standards, Washington, D. C.
[4] Dey, A. (1977) : Construction of regular group divisible designs, Biometrika 64 : 647-49.
[5] Dey, A. (i988) : Some new partially balanced designs, Sankhya B, 50 (1): 90-94.
[6] Dey, A. and Nigam, A. K. (1985) : Construction of group divisible designs, J. Indian Soc. Agri. Statist., 37 : 163-66.
[7] Freeman, G. H. (1976) : A cyclic method of constructing regular group divisible incomplete block designs, Biometrika. 63 : 555-58.
[8] John, J. A. and Turner, G. (1977) : Some new group divisible designs, J. Satistical Planning and Inference. 1 : 103-7.
[9] John, J. A., Wolock, F. W. and David, H. A. (1972) : Cyclic Designs, National Bureau of Standards, Washington, D. C.
[10] Nair, C. R. (1962) : On the method of block section and intersection applied to construct PBIB designs, Calcutta Statist. Assocn. Bulletin, 11 (2) : 50-54.
[11] Saha, G. M. and Samanta, B. K. (1985) : A construction of balanced arrays of strength t and somerelated bloek designs, Annals Institute of Statistical Math., 37: 337-345.
[12] Sane; S. D. (1980) : Some new constructions of balanced incomplete block designs, Utilitas Mathemetica, 18 : 217-224.

